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Abstract— Persistent queries are a specific kind of queries
used in information retrieval systems to represent a user’s
long-term standing information need. These queries can present
many different structures, being the “bag of words” that most
commonly used. They can be sometimes formulated by the
user, although this task is usually difficult for him and the
persistent query is then automatically derived from a set of
sample documents he provides.

In this work we aim at getting persistent queries with a more
representative structure for text retrieval issues. To do so, we
make use of soft computing tools: fuzzy logic is considered
for representation and inference purposes by dealing with the
extended Boolean query structure, and multiobjective evolution-
ary algorithms are applied to build the persistent fuzzy query.
Experimental results will show how both an expressive fuzzy
logic-based query structure and a proper learning process to
derive it are needed in order to get a good retrieval efficacy, when
comparing our process to single-objective evolutionary methods
to derive both classic Boolean and extended Boolean queries.

I. INTRODUCTION

Persistent queries (PQs) are useful tools for information
retrieval system (IRS) [2] users having a relatively specific
information need remaining fixed during a certain time period
[18], [13]. By the definition of these kinds of queries, the in-
formation filtering process can be put into effect by delivering
interesting information to a user, thus getting him permanently
updated on his interest topics [14].

Although different structures can be used to represent a
PQ, it is usually difficult for a user to formulate the query
regardless its structure [18], [12], [13]. This way, explicit PQs
automatically learned from a training set of documents by
means of user’s relevance feedback are normally considered
in information routing systems.

Soft computing tools have demonstrated to be useful in
the personalization of IRSs, providing them with flexibility
and some kind of “intelligence”. The latter is viewed as the
capability of automatically adaptating to a context or service
based on implicit behavior and learning instead of explicit
solicitation from users [11], [19], [8].

One of the ways to add flexibility to an IRS is to make
it tolerant to uncertainty and imprecision —both inherent to

the user-system interaction— what can be achieved allowing a
more natural expression of users’ needs [19]. To do so, some
flexible query languages based on the application of fuzzy
set theory have been proposed which make possible simple
and approximate expressions of subjective information needs
[4]. In this contribution, we will deal with extended Boolean
queries, considering them to improve the representative power
of classic Boolean ones when used as PQ structures.

On the other hand, the IRS self-adaptativeness can be
tackled by the machine learning perspective of soft computing,
put into effect by evolutionary algorithms [1], neural networks
and Bayesian networks, among others. These techniques can
be hybridized with the representative power of flexible query
languages to get “intelligent” IRSs [8]. In particular, evolution-
ary algorithms has obtained promising results in IR [9]. We
will consider the use of multiobjective evolutionary algorithms
[6] to automatically derive several fuzzy PQs representing the
user’s information needs in a single run.

So, the aim of this contribution is to propose the use of
a new, more flexible query structure —the extended Boolean
query— to appropriately represent PQs for text retrieval and
to introduce an evolutionary learning process to explicitly
derive PQs of this composition. The latter will be based on a
multiobjective technique able to automatically generate several
PQs with a different trade-off between precision and recall in
a single run.

The proposal will be validated in a simulated text retrieval
environment considering seven different information needs ex-
tracted from the classic Cranfield collection. Its efficacy will be
compared with Boolean and extended Boolean PQs extracted
by means of single-objective evolutionary algorithms.

To do so, this contribution is structured as follows. Section
2 is devoted to introduce the PQ framework basics and the
use of soft computing tools to construct them. Then, Section
3 briefly describes the single-objective evolutionary algorithms
considered to derive Boolean and extended Boolean PQs.
The multiobjective GA-P proposal to construct fuzzy PQs is
reviewed in Section 4. Section 5 presents the experiments
developed to test it and the analysis of results, while the



conclusions are pointed out in Section 6. Finally, an Appendix
is reported with the basics of the extended Boolean retrieval
model.

II. CONSTRUCTION OF FLEXIBLE PERSISTENT QUERIES

A. Information Filtering and Persistent Queries

Information filtering refers to a information seeking pro-
cess where the user is assumed to be searching information
addressing a specific long-term interest [18], [14].

In an information filtering system, the user’s permanent
information need is represented in the form of a “profile”. The
most common profile structure is the “bag of words”, which
is based on a set of keywords representing the user’s interest.
Many systems assume a implicit definition of the profile by
the user, although this comes with the classic human-computer
interaction “vocabulary problem”, involving the difficulty for
the user to select the right words to communicate with the sys-
tem. This is specially important in this case as the profile can
neither be too broad —as in that case the information filtering
system would retrieve so many non relevant documents— nor
too specific —as much valuable information can be lost—.

Due to this reason, machine learning techniques have been
applied to construct “implicit profiles” [12], [18]. In this case,
the profile is automatically learned by the system from a
training set of documents provided by the user.

Belkin and Croft suggested that IR techniques can be
successfully applied to information filtering [3]. This way, the
profile can be represented as a query formulated using any
IR retrieval model, the so called PQ [13]. Besides, IR query
formulation techniques such as relevance feeeback or inductive
query by example can be applied in information filtering.

B. Flexible Persistent Queries

As different query structures from different IR retrieval
models can be used to represent a PQ, the obtaining of
effective retrieval results depends on the user’s ability to
express his information needs in the form of a query both
in information filtering and in IR. It has been shown that
the user often does not have a clear picture of what he is
looking for and can only represent his information need in
vague and imprecise terms, resulting in a situation known as
fuzzy-querying [17].

Flexible query languages can help to solve this problem
due to their capability of personalization. A flexible query
language is a language that makes possible a simple and
approximate expression of subjective information needs [19]
(see the description of the fuzzy IR model in the Appendix).

This way, the modeling of user profiles in the form of
flexible PQs can help us to improve both the retrieval efficacy
and the comprehensibility of the obtained PQs.

C. Inductive Query by Example of Persistent Queries

Inductive Query by Example (IQBE) [5] was proposed as
“a process in which searchers provide sample documents and
the algorithms induce the key concepts in order to find other
relevant documents”. It works by taking a set of relevant (and

optionally, non relevant documents) provided by a user and
applying an off-line machine learning process to automatically
generate a query describing the user’s needs from that set. The
obtained query can then be run in other IRSs to obtain more
relevant documents.

Hence, IQBE techniques can be directly applied to construct
PQs for information filtering, as they work in the same way
than explicit profile learning methods. In this contribution,
we consider the application of existing evolutionary IQBE
techniques to the derivation of flexible PQs.

III. EVOLUTIONARY METHODS TO CONSTRUCT

PERSISTENT BOOLEAN AND FUZZY QUERIES

As the structure of Boolean and extended Boolean queries
is easily represented in the form of a expression tree, the IQBE
approaches to automatically derive them are usually based on
a specific evolutionary algorithm, genetic programming (GP)
[1]. The next two subsections are devoted to briefly review
the two most known algorithms for each of the query types
considered: Smith and Smith’s proposal for Boolean IRSs [20]
and Kraft et al.’s [16] for fuzzy IRSs.

A. The Smith and Smith’s Inductive Query by Example Algo-
rithm for Boolean Information Retrieval Systems

Coding Scheme: The Boolean queries are encoded in
expression trees, whose terminal nodes are query terms and
whose inner nodes are the Boolean operators AND, OR or
NOT , according to the grammar:
<QUERY>::= <TERM> | (<QUERY><OPERATOR><QUERY>)

<OPERATOR>::= AND | OR | NOT

<TERM>::= t1 | ...| tn

Selection Scheme: Each generation is based on selecting
two parents, with the best fitted one having a greater chance
to be chosen, and generating two offspring from them. Both
offspring are added to the current population1.

Genetic Operators: The usual GP crossover is consid-
ered, which is based on randomly selecting one edge in each
parent and exchanging both subtrees from these edges between
the both parents. No mutation operator is used2.

Generation of the Initial Population: All the individuals
in the first population are randomly generated. A pool is
created with all the terms included in the set of relevant
documents provided by the user, having those present in more
documents a higher probability of being selected.

Fitness function:: The following function, combining the
common precision and recall measures, is maximized:

F = α ·P +β ·R ; P =

∑
d rd · fd∑

d fd

; R =

∑
d rd · fd∑

d rd

(1)

1Our implementation differs in this point as we consider a classical
generational scheme with elitism. The intermediate population is created by
means of tournament selection [1], which involves the random selection of
a number t of individuals from the current population and the choice of the
best adapted of them to take one place in the new population.

2We do use a mutation operator which changes a randomly selected term
or operator by a random one, or a randomly selected subtree by a randomly
generated one.



with rd ∈ {0, 1} being the relevance of document d for the
user and fd ∈ {0, 1} being the retrieval of document d in
the processing of the current query. α and β are real-valued
coefficients weighting the relative importance of precision and
recall.

B. The Kraft et al.’s Inductive Query by Example Algorithm
for Fuzzy Information Retrieval Systems

Coding Scheme: The fuzzy queries are encoded in ex-
pression trees, whose terminal nodes are query terms with
their respective weights and whose inner nodes are the Boolean
operators AND, OR or NOT .

Selection Scheme: It is based on the classical generational
scheme with elitism, where the intermediate population is
created from the current one by means of classic roulette wheel
selection3.

Genetic Operators: The usual GP crossover is used. The
following three possibilities are randomly selected —with the
showed probability— for the GP mutation:

a) Random selection of an edge and random generation of
a new subtree that substitutes the old one located in that
edge (p=0.4).

b) Random change of a query term for another one, not
present in the encoded query, but belonging to any
relevant document (p=0.1).

c) Random change of the weight of a query term (p=0.5).

Generation of the Initial Population: A first individual
is obtained by generating a random tree representing a query
with a maximum predefined length and composed of randomly
selected terms existing in the initial relevant documents pro-
vided by the user, and with all the term weights set to 1. The
remaining individuals are generated in the same way but with
a random size and random weights in [0,1].

Fitness function: The fitness function showed in Section
III-A is considered.

IV. A MULTIOBJECTIVE GA-P ALGORITHM TO

CONSTRUCT PERSISTENT EXTENDED BOOLEAN QUERIES

Our multiobjective proposal to learn persistent extended
Boolean queries is based on a specific variant of the GP tech-
nique, the GA-P paradigm [15]. This evolutionary algorithm
that simultaneously evolves hybrid individuals encoding both
an expression and its associated parameters (a query tree and
its numeric weigths in our case) has demonstrated a larger
performance than the basic GP used by Kraft et al. [7].

The IQBE algorithm deals with the fuzzy query learning
as a multiobjective problem, thus being able to automatically
generate several queries with a different trade-off between
precision and recall in a single run. To do so, classic Fonseca
and Fleming’s Pareto-based MOGA scheme [6] is considered.

The different components of the multiobjective evolution-
ary algorithm (MOGA-P) are reviewed as follows. A wider
description can be found in [10].

3Once again, our implementation considers the tournament selection to
improve the algorithm’s performance.

Coding Scheme: The expressional part (GP part) encodes
the query composition —terms and logical operators— and the
coefficient string (GA part) represents the term weights with
a real coding scheme, as shown in Fig. 1.

t1

0.5

0.7

0.25

w1

w2

w3t3 4t

Value string

OR

AND

Expressional part

Fig. 1. Individual encoding the query 0.5 t1 AND (0.7 t3 OR 0.25 t4)

Fitness Function: The precision and recall criteria —
computed as showed in Section III-A— are jointly maximized.

Pareto-based Multiobjective Selection and Niching
Scheme: The selection scheme involves the following steps:

1) Each individual is assigned a rank equal to the number
of individuals dominating it plus one (non-dominated
individuals receive rank 1).

2) The population is increasingly sorted by that rank.
3) Each individual is assigned a fitness value according to

its ranking in the population: f(Ci) = 1
rank(Ci)

.
4) The fitness assignment of each group of individuals with

the same rank is averaged among them.

Then, a niching scheme is applied in the objective space
to obtain a well-distributed set of queries with a different
trade-off between precision and recall (see [10] for details).
Finally, the intermediate population is obtained by tournament
selection.

Genetic Operators: The BLX-α crossover operator [1]
is applied twice on the GA part to obtain two offsprings.
Michalewicz’s non-uniform mutation operator [1] is consid-
ered to perform mutation on that part.

The usual GP crossover is considered for the GP part. Two
different mutation operators are applied: random generation of
a new subtree, and random change of a query term by another
not present in the encoded query.

V. EXPERIMENTS AND ANALYSIS OF RESULTS

The document collection considered to design our experi-
mental setup has been the classic Cranfield collection, com-
posed of 1398 documents about Aeronautics [2]. It has been
automatically indexed by first extracting the non-stop words,
applying a stemming algorithm, thus obtaining a total number
of 3857 different indexing terms, and then using a binary
indexing for the Boolean PQ experiments and the normalized
IDF scheme (see Appendix A) to generate the term weights
in the document representations for the fuzzy PQ ones.

Among the 225 queries associated to the Cranfield collec-
tion, we have selected those presenting 20 or more relevant
documents (queries 1, 2, 23, 73, 157, 220 and 225). The
number of relevant documents associated to each of these



seven queries are 29, 25, 33, 21, 40, 20 and 25, respectively.
The relevance judgements associated to each of these selected
queries have been considered to play the role of seven different
user’s information needs.

For each one of these queries, the documentary base has
been randomly divided into two different, non overlapped,
document sets, training and test, each of them composed of a
fifty percent of the (previously known) relevant and irrelevant
documents for the query.

The two single-objective GP algorithms have been run five
different times on each of the seven training sets represent-
ing the corresponding PQ learning scenario, considering five
different combinations for the fitness function coefficients
weighting the relative importance of precision and recall
((α, β) = {(1.2, 0.8), (1.1, 0.9), (1, 1), (0.9, 1.1), (0.8, 1.2)}).
This way, five different PQs of each kind (Boolean and fuzzy),
with a different precision-recall trade-off have been derived for
each information need. On the other hand, MOGA-P has been
run4 a single time on each training document set and five PQs
well distributed on the Pareto front has been selected from
each of the seven Pareto sets obtained.

All these PQs (the five Boolean queries, the five fuzzy
queries obtained from Kraft et al.’s algorithm, and the other
five fuzzy queries derived from MOGA-P) has been run on the
corresponding test set once preprocessed5 in order to evaluate
their capability to retrieve relevant information for the user.

Tables I to III shows the retrieval efficacy of the five PQs
derived for each scenario. In those tables, P and R stand for
the precision and recall values, and rr/rt for the absolute
number of relevant and retrieved documents, respectively.

The experiments developed allow us to develop an in-
teresting analysis. At first sight, we can remark the good
performance of our proposal. On the one hand, the PQs
constructed by it show a higher diversity with respect to those
of the other two approaches. As expected, the multiobjective
scheme allows us to cover the Pareto front in a better way
than selecting different weight combinations for the single-
objective fitness function. On the other hand, the extended
Boolean queries generated by MOGA-P got the best retrieval
efficacy in the training sets in every case, i.e., they were able to
more properly model the information need represented by the
document set provided by the user. Finally, their performance
on the test collections, that is, the capability of the derived PQs
to retrieve new relevant documents for the user’s information
need, is significant. It can be seen how the MOGA-P fuzzy
PQs have a better trade-off between precision and recall in the
test document sets than the other two groups of PQs: while
their recall is usually a little bit lower (in all cases but in query

4The common parameter values considered by the three evolutionary
algorithms are a population size of 800 individuals, 50000 evaluations per
run, a maximum of 20 nodes for the query tree sizes, a tournament size t
of 10% of the population size, 0.8 and 0.2 for the crossover and mutation
probabilities (in both the GA and the GP parts in the MOGA-P). The retrieval
threshold σ has been set to 0.1 in the fuzzy IRS.

5As the index terms of the training and test documentary bases can be
different, there is a need to translate training queries into test ones, removing
those terms without a correspondence in the test set.

TABLE I

RETRIEVAL EFFICACY OF SMITH AND SMITH’S BOOLEAN PQS

Training set Test set

#q P R rr/rt P R rr/rt

1 1.000 0.571 8/8 0.000 0.000 0/1
2 1.000 0.429 6/6 0.000 0.000 0/6

1 3 1.000 0.500 7/7 0.059 0.400 6/101
4 0.074 1.000 14/189 0.046 0.600 9/195
5 0.066 1.000 14/211 0.048 0.667 10/210

1 1.000 0.250 3/3 0.000 0.000 0/6
2 1.000 0.417 5/5 0.111 0.077 1/9

2 3 1.000 0.500 6/6 0.200 0.077 1/5
4 0.046 1.000 12/260 0.047 0.923 12/255
5 0.032 1.000 12/378 0.033 0.923 12/361

1 1.000 0.375 6/6 0.000 0.000 0/4
2 1.000 0.250 4/4 0.000 0.000 0/0

23 3 1.000 0.312 5/5 0.111 0.059 1/9
4 0.047 1.000 16/341 0.031 0.647 11/350
5 0.058 1.000 16/275 0.039 0.588 10/254

1 1.000 0.300 3/3 0.000 0.000 0/1
2 1.000 0.400 4/4 0.000 0.000 0/4

73 3 1.000 0.500 5/5 0.000 0.000 0/2
4 1.000 0.300 3/3 0.000 0.000 0/1
5 0.069 1.000 10/145 0.038 0.545 6/159

1 1.000 0.300 6/6 0.000 0.000 0/2
2 1.000 0.300 6/6 0.025 0.750 15/601

157 3 1.000 0.250 5/5 0.000 0.000 0/5
4 0.044 1.000 20/456 0.029 0.650 13/446
5 0.041 1.000 20/484 0.027 0.650 13/488

1 1.000 0.500 5/5 0.014 1.000 10/699
2 1.000 0.500 5/5 0.250 0.100 1/4

220 3 1.000 0.300 3/3 0.000 0.000 0/0
4 1.000 0.500 5/5 0.167 0.200 2/12
5 0.093 1.000 10/107 0.042 0.500 5/118

1 1.000 0.583 7/7 0.000 0.000 0/4
2 1.000 0.750 9/9 0.000 0.000 0/2

225 3 1.000 0.667 8/8 0.000 0.000 0/2
4 0.068 1.000 12/176 0.026 0.385 5/194
5 0.074 1.000 12/162 0.021 0.231 3/140

157), their precision is pretty higher, what makes the access
to the new relevant information easier for the user.

It can be seen how Boolean PQs do not show a good
retrieval performance on the test collections. They are either
not able to retrieve relevant documents at all or output every
relevant document together with a large number of irrelevant
ones, thus having small precision values and making difficult
the retrieval task for the user. However, it is very important to
realize that it is not enough to work with a more flexible and
representative structure for the PQ (as the extended Boolean
query) to achieve good results but it has to be constructed
in a proper way. Note how the Kraft et al.’s fuzzy PQs
presenting higher recall in the test documents usually retrieve
every document in the base, thus showing a very low precision
(this happens in all queries but in number 220, where the latter
process constructs a PQ with full recall and good precision),
while the Boolean queries succesfully discriminate a larger
number of documents, getting higher precision values. Hence,
it is clear that the multiobjective evolutionary algorithm is
playing a key role in the good retrieval performance of the
derived fuzzy PQs.

Finally, we would like to focus the analysis on the test



TABLE II

RETRIEVAL EFFICACY OF KRAFT ET AL.’S FUZZY PQS

Training set Test set

#q P R rr/rt P R rr/rt

1 1.000 0.500 7/7 0.000 0.000 0/1
2 1.000 0.714 10/10 0.750 0.200 3/4

1 3 1.000 0.643 9/9 0.667 0.133 2/3
4 0.020 1.000 14/698 0.021 1.000 15/700
5 0.020 1.000 14/698 0.021 1.000 15/700

1 1.000 0.750 9/9 0.750 0.231 3/4
2 1.000 0.750 9/9 0.500 0.077 1/2

2 3 1.000 0.667 8/8 0.667 0.308 4/6
4 0.017 1.000 12/698 0.019 1.000 13/700
5 0.017 1.000 12/698 0.019 1.000 13/700

1 1.000 0.500 8/8 0.500 0.059 1/2
2 1.000 0.438 7/7 0.000 0.000 0/12

23 3 1.000 0.500 8/8 0.000 0.000 0/10
4 0.023 1.000 16/698 0.024 1.000 17/700
5 0.023 1.000 16/698 0.024 1.219 17/700

1 1.000 0.600 6/6 1.000 0.455 5/5
2 1.000 0.700 7/7 1.000 0.091 1/1

73 3 1.000 0.900 9/9 0.556 0.455 5/9
4 1.000 0.500 5/5 0.000 0.000 0/0
5 0.435 1.000 10/23 0.059 0.156 1/17

1 1.000 0.500 10/10 0.083 0.050 1/12
2 1.000 0.500 10/10 0.000 0.000 0/13

157 3 0.923 0.600 12/13 0.077 0.200 4/52
4 0.029 1.000 20/699 0.029 1.000 20/699
5 0.029 1.000 20/699 0.029 1.000 20/699

1 1.000 0.800 8/8 0.200 0.100 1/5
2 1.000 0.600 6/6 0.500 0.300 3/6

220 3 1.000 0.900 9/9 0.250 0.200 2/8
4 1.000 0.800 8/8 0.014 1.000 10/699
5 0.106 1.000 10/94 0.120 1.000 10/83

1 1.000 0.667 8/8 0.000 0.000 0/2
2 1.000 0.667 8/8 0.250 0.077 1/4

225 3 1.000 0.667 8/8 0.000 0.000 0/0
4 1.000 0.500 6/6 0.019 1.000 13/700
5 0.207 1.000 12/58 0.036 0.154 2/55

results of query 225, where the three groups of PQs actually
perform very bad and the worst results are obtained by the
MOGA-P (just one of the learned PQs succeds at retrieving
a relevant document). In our opinion, this is since there is a
larger diversity of index terms in the relevant documents for
this Cranfield query, and hence it is more difficult for those
index terms existing in the training documents to appropriately
describe the test relevant documents. This would also explain
the bad behavior of the MOGA-P in this case as its larger
capability to adapt to the training document set will cause the
usual machine learning overfitting problem to happen.

VI. CONCLUDING REMARKS

The use of soft computing tools to design PQs for text
retrieval has been analyzed by constructing extended Boolean
queries from sets of training documents extracted from the
Cranfield collection. The multiobjective GA-P algorithm con-
sidered for this task has obtained better results than previ-
ous single-objective evolutionary algorithms for Boolean and
extended Boolean queries, showing how a right use of soft
computing tools allows an appropriate personalization of IRSs.

In our opinion, several future works arise from the present

TABLE III

RETRIEVAL EFFICACY OF MOGA-P FUZZY PQS

Training set Test set

#q P R rr/rt P R rr/rt

1 1.000 0.643 9/9 0.000 0.000 0/3
2 0.786 0.786 11/14 0.143 0.067 1/7

1 3 0.591 0.929 13/22 0.154 0.133 2/13
4 0.318 1.000 14/44 0.111 0.267 4/36
5 0.304 1.000 14/46 0.188 0.400 6/32

1 1.000 0.667 8/8 0.143 0.154 2/14
2 1.000 0.667 8/8 0.143 0.154 2/14

2 3 0.579 0.917 11/19 0.000 0.000 0/24
4 0.387 1.000 12/31 0.216 0.615 8/37
5 0.273 1.000 12/44 0.297 0.846 11/37

1 1.000 0.625 10/10 0.111 0.059 1/9
2 0.786 0.688 11/14 0.455 0.294 5/11

23 3 0.591 0.812 13/22 0.344 0.647 11/32
4 0.390 1.000 16/41 0.208 0.588 10/48
5 0.232 1.000 16/69 0.031 0.118 2/65

1 1.000 0.900 9/9 0.455 0.455 5/11
2 0.769 1.000 10/13 0.062 0.091 1/16

73 3 0.526 1.000 10/19 0.071 0.091 1/14
4 0.500 1.000 10/20 0.208 0.455 5/24
5 0.692 0.900 9/13 0.250 0.455 5/20

1 1.000 0.500 10/10 0.375 0.150 3/8
2 0.789 0.750 15/19 0.250 0.150 3/12

157 3 0.593 0.800 16/27 0.300 0.300 6/20
4 0.390 0.800 16/41 0.119 0.250 5/42
5 0.299 1.000 20/67 0.195 0.800 16/82

1 1.000 0.900 9/9 0.111 0.100 1/9
2 0.714 1.000 10/14 0.600 0.300 3/5

220 3 0.588 1.000 10/17 0.167 0.100 1/6
4 0.588 1.000 10/17 0.167 0.100 1/6
5 0.833 1.000 10/12 0.200 0.100 1/5

1 1.000 0.917 11/11 1.000 0.077 1/1
2 0.688 0.917 11/16 0.000 0.000 0/8

225 3 0.579 0.917 11/19 0.000 0.000 0/15
4 0.324 1.000 12/37 0.000 0.000 0/33
5 0.324 1.000 12/37 0.000 0.000 0/33

contribution. On the one hand, retrieval measures considering
not only the absolute number of relevant and non relevant
documents retrieved, but also their ranking in the retrieved
document list have to be considered as they will help us
to analyze the real performance of the fuzzy PQs. On the
other hand, we think on using more advanced multiobjective
evolutionary approaches than the basic MOGA technique.
Besides other even more expressive PQ structures such as
linguistic queries can be considered. Finally, we also plan to
consider fuzzy aggregation operators to combine the retrieved
document sets obtained from the different PQs derived from
the MOGA-P algorithm into a single list, thus enhancing the
user’s ability to get relevant information as it would come from
PQs with a different trade-off between precision and recall.
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APPENDIX

A. Fuzzy Information Retrieval Systems

The fuzzy IR model [4] was proposed to flexibilize Boolean
IRSs with the aim of overcoming several of its limitations
(such as the ranking of the retrieved document set) without a
need of a complete redesign. Its main aspects are as follows:

Indexing: An indexing function F : D × T → [0, 1]
is defined as a fuzzy relation mapping the degree to which
document d belongs to the set of documents “about” the
concept(s) represented by term t. By projecting it, a fuzzy
set is associated to each document (di = {< t, µdi

(t) > | t ∈
T}; µdi

(t) = F (di, t)) and term (tj = {< d, µtj
(d) > | d ∈

D}; µtj
(d) = F (d, tj)). In this paper we will work with

Salton’s normalized inverted document frequency (IDF) [2].
Query subsystem: Fuzzy IRSs deal with a extended

Boolean (fuzzy) query structure composed of weighted, posi-
tive or negative terms joined by the AND and OR operators.
Weights allows the users to define selection conditions as
soft constraints on the significance of the index terms in the
document representations, while the modeling of the Boolean
conjunctions as fuzzy operators allows us to increase the
flexibility of the IRS.

Hence, the query subsystem affords a fuzzy set q defined on
the document domain specifying the RSV of each document
in the data base with respect to the processed query: q = {<
d, µq(d) > | d ∈ D} ; µq(d) = RSVq(d).

Thus, documents can be ranked according to the member-
ship degrees of relevance before being presented to the user,
as in vector space IRSs. The retrieved document set can be
specified providing an upper bound for the number of retrieved
documents or defining a threshold σ for the RSV (the σ-cut
of the query response fuzzy set q).

Matching mechanism: Several possibilities arise depend-
ing on the query weight interpretation considered [4]. In the
importance interpretation, query weights represent the relative
importance of each term in the query. When a single term
query is logically connected to another by the AND or OR
operators, the relative importance of the single term in the
compound query is taken into account by associating a weight
to it. To maintain the semantics of the query, this weighting has
to take a different form according as the single term queries are
ANDed or ORed. Therefore, assuming that A is a fuzzy term
with assigned weight w, the following expressions are applied
to obtain the fuzzy set associated to the weighted single term
queries Aw (disjunctive queries) and Aw (conjunctive ones):

Aw = {< d, µAw
(d) > | d ∈ D}

µAw
(d) = Min (w, µA(d))

(2)

Aw = {< d, µAw(d) > | d ∈ D}
µAw(d) = Max (1 − w, µA(d))

(3)

If the term is negated in the query, a negation function
is applied to obtain the corresponding fuzzy set: A = {<
d, µ

A
(d) > | d ∈ D} ; µ

A
(d) = 1 − µA(d).

Finally, the RSV of the compound query is obtained by
combining the single weighted term evaluations into a unique
fuzzy set as follows:

A AND B = {< d, µA AND B(d) > | d ∈ D}
µA AND B(d) = Min(µA(d), µB(d))

(4)

A OR B = {< d, µA OR B(d) > | d ∈ D}
µA OR B(d) = Max(µA(d), µB(d))

(5)
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